Strongly binding myosin crossbridges regulate loaded shortening and power output in cardiac myocytes.

نویسندگان

  • K S McDonald
  • R L Moss
چکیده

This study investigated the possible roles of strongly binding myosin crossbridges in determining loaded shortening and power output in cardiac myocytes. Single skinned cardiac myocytes were attached between a force transducer and position motor, and shortening velocities were measured over a range of loads during varying levels of Ca(2+) activation. Lowering the [Ca(2+)] slowed shortening velocities, decreased relative power output, and increased the curvature of length traces. We tested the hypothesis that Ca(2+) activation dependence of loaded shortening is determined primarily by strongly binding crossbridges or by [Ca(2+)] per se, which was done by measuring loaded shortening before and after addition of N-ethylmaleimide-conjugated myosin subfragment-1 (NEM-S1), a strongly binding myosin analogue that cooperatively enhances thin filament activation. At fixed [Ca(2+)], NEM-S1 reduced the curvature of length traces and sped loaded shortening velocities. Even when [Ca(2+)] was adjusted so that force was equal with and without NEM-S1, myocyte shortening was faster and exhibited less curvature with NEM-S1. In the presence of NEM-S1, peak relative power output was also significantly greater during activations either at the same [Ca(2+)] or when [Ca(2+)] was adjusted to achieve the same force. Consequently, NEM-S1 eliminated any Ca(2+) dependence of relative power output that is normally observed in cardiac myocytes. These results indicate that strongly binding crossbridges play a significant role in determining loaded shortening and power output and suggest that previously observed Ca(2+) dependence of power output is mediated by alterations in numbers of crossbridges bound to the thin filament.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loaded shortening, power output, and rate of force redevelopment are increased with knockout of cardiac myosin binding protein-C.

Myosin binding protein-C (MyBP-C) is localized to the thick filaments of striated muscle where it appears to have both structural and regulatory functions. Importantly, mutations in the cardiac MyBP-C gene are associated with familial hypertrophic cardiomyopathy. The purpose of this study was to examine the role that MyBP-C plays in regulating force, power output, and force development rates in...

متن کامل

Loaded shortening and power output in cardiac myocytes are dependent on myosin heavy chain isoform expression.

The purpose of this study was to examine the role of myosin heavy chain (MHC) in determining loaded shortening velocities and power output in cardiac myocytes. Cardiac myocytes were obtained from euthyroid rats that expressed alpha-MHC or from thyroidectomized rats that expressed beta-MHC. Skinned myocytes were attached to a force transducer and a position motor, and isotonic shortening velocit...

متن کامل

Power output is increased after phosphorylation of myofibrillar proteins in rat skinned cardiac myocytes.

beta-Adrenergic stimulation increases stroke volume in mammalian hearts as a result of protein kinase A (PKA)-induced phosphorylation of several myocyte proteins. This study investigated whether PKA-induced phosphorylation of myofibrillar proteins directly affects myocyte contractility. To test this possibility, we compared isometric force, loaded shortening velocity, and power output in skinne...

متن کامل

Altered single cell force-velocity and power properties in exercise-trained rat myocardium.

Myocardial function is enhanced by endurance exercise training, but the cellular mechanisms underlying this improved function remain unclear. The ability of the myocardium to perform external work is a critical aspect of ventricular function, but previous studies of myocardial adaptation to exercise training have been limited to measurements of isometric tension or unloaded shortening velocity,...

متن کامل

Inorganic phosphate speeds loaded shortening in rat skinned cardiac myocytes.

Force generation in striated muscle is coupled with inorganic phosphate (P(i)) release from myosin, because force falls with increasing P(i) concentration ([P(i)]). However, it is unclear which steps in the cross-bridge cycle limit loaded shortening and power output. We examined the role of P(i) in determining force, unloaded and loaded shortening, power output, and rate of force development in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 87 9  شماره 

صفحات  -

تاریخ انتشار 2000